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Fuzzy set theory language and ideas are used to express basic quantum logic 
notions. The possibility of replacing probabilistic interpretation of quantum 
mechanics by interpretation based on infinite-valued logics and fuzzy set theory 
is outlined. Short review of various structures encountered in the fuzzy set 
approach to quantum logics is given. 

1. INTRODUCTION 

Fuzzy set theory was born in 1965 in a paper by Zadeh (1965) but since 
its very idea can be regarded as a result of applying infinite-valued logic to 
evaluate the truth-value of a sentence "x belongs to X," its roots can be 
traced back to multiple-valued logics studied by Lukasiewicz (1970) and Post 
(1921) in the early twenties. Reichenbach (1944) tried to interpret quantum 
mechanics in terms of a three-valued logic by introducing the third value 
indeterminate besides true and false to evaluate truth-values of quantum 
mechanical statements. His ideas, however, were criticized by Feyerabend 
(1958) as "leading to undesirable consequences." Infinite-valued Lukasiewicz 
logic L~o was considered as a proper propositional calculus for quantum 
mechanics by Giles (1977). Giles (1976) showed that this logic is related to 
Zadeh fuzzy sets in the same way as ordinary two-valued logic is related to 
ordinary sets. 

The ideas contained in Giles (1976, 1977) and especially Giles' (1976) 
notions of bold union and bold intersection are points of departure for the 
present paper. The other point of departure is the vast field of the quantum 
logic approach to the foundations of physical theories (Birkhoff and von 
Neumann, 1936; Mackey, 1963; Jauch, 1968; Piron, 1976; Beltrametti and 
Cassinelli, 1981). Some of the results of the present paper were developed 
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in Pykacz (1987a,b, 1988, 1989, 1990), but since these papers are difficult to 
obtain, they are repeated here. 

For the convenience of the reader we recall in the next section some 
basic definitions from the domains of fuzzy set theory and quantum logics. 

2. BASIC NOTIONS OF FUZZY SET THEORY 
AND QUANTUM LOGICS 

2.1. Fuzzy Sets 

In his historic paper Zadeh (1965) introduced the notion of a fuzzy set 
in order to describe situations in which certain objects belong to a set "to 
some extent," contrary to the situation encountered in traditional set theory, 
where only the cases of complete membership or nonmembership are 
allowed. In such a way he opened a possibility of studying sets the boundaries 
of which vanish gradually. Such situations are encountered mainly in "soft" 
scienceS, e.g., psychology, economy, linguistics, medicine, etc., but also in 
traditional mathematics when we say, for example, "E small enough" or "x 
much bigger than 1," Since sets defined by these predicates have no sharp 
boundaries. 

Dubois and Prade (1980) in the Introduction to their book say that 
there are generally two situations in which fuzziness appears. The first one 
is encountered when every single object actually belongs or does not belong 
to a set, i.e., it fully possesses or does not possess a property which distin- 
guishes it from other objects but we do not know which case actually hap- 
pens. In this case fuzziness appears as a result of lack of our knowledge and 
this situation usually can be dealt with by probabilistic language and meth- 
ods. The second situation is a "genuine" fuzzy situation in which fuzziness 
appears because a predicate which defines a set is vague. Dubois and Prade 
illustrate the difference between these two situations by applying, respec- 
tively, predicates "genuine Indian" and "old" to pieces of pottery in a shop. 
We shall argue later that in quantum mechanics we encounter still another 
situation in which fuzziness of a set consisting of pure quantum states is 
generated by the unavoidable dispersion of experimental results of any test 
which is used to check a property which defines a set. 

Although axiomatic approaches to fuzzy set theory of the type of both 
Zermelo-Fraenkel (Chapin, 1974, 1975) and Goedel-Bernays (Novak, 1980) 
axiomatizations have already been given, for our purposes it suffices to 
adopt Zadeh's original intuitive approach based on the following definitions 
(Zadeh, 1965; Dubois and Prade, 1980). 
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Definition 2.1. Let U be a classical set of objects, called a universe. A 
fuzzy set A in U is characterized by a membership function p A : U ~  [0, 1]. 
The value pA(x) represents the grade of membership of x in A. 

Definition 2.2. A fuzzy set is empty (denoted f~5) iff its membership 
function is identically equal to zero on U, i.e., pA(x)=0. Two fuzzy sets A 
and B are equal iff 

pA(x)=pa(x) for all x~ U (1) 

and A is contained in B iff 

pA(X)<_pB(X) for all x~U (2) 

Fuzzy set A is normalized iff there exists xe  U such that pA(x) = 1. 

Remarks. 1. Membership functions are natural generalizations of two- 
valued characteristic functions of classical sets, therefore classical sets (usu- 
ally called crisp sets in fuzzy literature) are fuzzy sets of a special kind. 

2. It was pointed out by Kaufmann (1975) that fuzzy sets are actually 
generalizations of crisp subsets of a universe U. We shall stick, however, to 
the more popular terminology. 

It is possible to endow a family of fuzzy sets with many set-theoretic 
operations in such a way that after replacing [0, 1]-valued membership 
functions by {0, 1}-valued characteristic functions, i.e., after coming back 
to the classical set theory the usual set theoretic union, intersection, and 
complement are recovered. These operations can be grouped into triples 
consisting of fuzzy set generalizations of union, intersection, and comple- 
ment in such a way that the De Morgan laws hold. The most frequently 
used triple is the triple introduced already by Zadeh in his first paper on 
fuzzy sets (Zadeh, 1965). 

Definition 2.3. Let A and B be fuzzy sets with membership functions 
pA and p B, respectively. The (standard) fuzzy union of A and B, intersection 
of A and B, and complement of A are fuzzy sets denoted, respectively, A u B, 
A n B, and A', the membership functions of which are given by the following 
formulas: 

PA u B(x) = max[pA(x), p B(x)] (3) 

PA ~ B(x) = min[p A(x), p B(x)] (4) 

~ . , ( x )  = 1 - ~ . ( x )  ( 5 )  

Zadeh operations are generated by Lukasiewicz disjunction, conjunc- 
tion, and negation in the same way as classical set-theoretic operations are 
generated by connectives of two-valued logic. For example, the truth-value 
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of the sentence "xeA w B" equals to the truth-value of the sentence " x e A  
or xe  B" both in the case of crisp sets and two-valued logic and in the case 
of fuzzy sets and infinite-valued Lukasiewicz logic. Lukasiewicz chose nega- 
tion " ~ "  and implication "--." as basic connectives and postulated that 

r(~p) = 1 - v(p) (6) 

r(p ~ q) =min(1 - ~'(p) + r(q), 1) (7) 

where r(p) denotes the truth-value of the sentence p. Max and min expres- 
sions for disjunction and conjunction are then obtained by assuming for 
disjunction the truth-value 

~(p or q) = r[(p --* q) --+ q] = max(r(p), r(q)) (8) 

and for conjunction the validity of the De Morgan law 

r(p and q)= r [~(~p or ~q)] =min(r(p),  r(q)) (9) 

However, as was noticed by Giles (1976), the classical connectives of disjunc- 
tion and conjunction also have other simple generalization in the infinite- 
valued Lukasiewicz logic. These other connectives, called by Giles (1976) 
boMdisjunction and bold conjunction, can be obtained by leaving the formulas 
(6), (7), and (9) unchanged but changing the relation (8) into the following 
one, even more familiar and in the case of two-valued logic equivalent: 

~(p or q) = r(~p-- ,  q) (10) 

These bold connectives give rise to other set-theoretic operations on fuzzy 
sets which were defined by Giles (1976) as follows: 

Definition 2.4. Let A and B be fuzzy sets. Bold union (denoted A u  B) 
and bold intersection (denoted A n  B) are fuzzy sets with membership 
functions 

/1A u e(X) = min(p A(X) + p B(X), 1) (1 1) 

PA~ a(X) = max(pA(X) + p B(X) -- 1, 0) (12) 

If A c~ B = ~ ,  then A and B are called weakly disjoint. 
Let us notice that membership functions of weakly disjoint sets satisfy 

the following inequality: 

pA(X)+pB(X)<I  for all x e U  (13) 

We shall argue later that bold operations are better for describing prop- 
erties of quantum mechanical systems than standard fuzzy operations. Let 
us note here one fact which indicates this direction. The family D=(U) of all 
fuzzy subsets of a given universe U endowed with standard fuzzy operations 



Fuzzy Set Ideas in Quantum Logics 1771 

is a De Morgan lattice, i.e., a distributive lattice with standard fuzzy comple- 
ment as involution: 

A"=A (14) 

This lattice is partially ordered by the fuzzy set inclusion (2). The standard 
fuzzy union and intersection are, respectively, the least upper bound and the 
greatest lower bound with respect to this partial order. However, the stand- 
ard fuzzy complement is not a complement in the lattice-theoretic sense since 
neither the excluded-middle law nor the law of contradiction hold for a 
genuine (i.e., noncrisp) fuzzy set A: 

A uA'/= U, A n A'-/=O (15) 

This is no longer true for Giles bold union and intersection combined with 
the standard fuzzy complement: 

AuA'= U, A ~ A ' : O  (16) 

Moreover, contrary to the De Morgan lattice (I:(U), w, c~, '), the structure 
(I:(U), u ,  ta, ') is nondistributive and therefore it is more similar to struc- 
tures encountered in the quantum logic approach. 

2.2. Quantum Logics  

We now recall definitions of basic quantum logic notions which will be 
used in the sequel. The reader interested in their physical justification is 
referred to the books of Mackey (1963), Jauch (1968) Piron (1976), or 
Beltrametti and Cassinelli (1981) which is a real encyclopedia of the quantum 
logic approach. 

Definition 2.5. A quantum logic (or simply a logic) is an orthomodular 
o--orthocomplete orthoposet, i.e., a partially ordered set L which contains 
the smallest element 0 and the greatest element I, in which the orthocomple- 
mentation map ' : L _l, L satisfying the conditions (i)-(iii) exists: 

(i) a"=a 
(ii) ifa_<b, then b < a  

(iii) the greatest lower bound (meet) a ^ a' and the least upper bound 
(join) a v  a' exist in L and a ^ a ' = O ,  a v  a '= l  

and the o'-orthocompleteness condition 

(iv) if ai<_a~ for i# j ,  then the join ~/iai exists in L 
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and orthomodular identity 

(v) i f a < b ,  then b=av(bAa')  

hold. 
Let us note that the existence of the meet b ^ a' and the join a v (b ^ a') 

in the right-hand side of an orthomodular identity follows from the o-- 
orthocompleteness condition and the De Morgan laws, which state that meet 
and join, when they exist, are not independent: 

(avb)'=a' Ab', (aAb)'=a'vb ' (17) 

Elements which satisfy assumptions of the o--orthocompleteness condi- 
tion i.e., such that ai<a} for i#j, are usually called orthogonal (or disjoint) 
and denoted a_Lb. Therefore, the cr-orthocompleteness condition consists in 
assuming that the join of  every countable pairwise orthogonal sequence 
exists in L. 

Definition 2.6. A probability measure (state) on a logic L is a map 
p :L ~ [0, 1] such that p(I) = 1 and p is o--additive for every countable pair- 
wise orthogonal sequence, i.e., if ai_Laj for i~j, then the series ~ip(ai) con- 
verges and 

Since a<a = (a')', the two-element sequence {a, a'} is orthogonal and 
we obtain immediately p(a) +p(a') =p(a v a') =p( I )  = 1. 

I fp(a)  =p(b) for all p belonging to some set of states implies a = b, then 
this set of states is called ordering (Beltrametti and Cassinelli, 1981) or full 
(Mackey, 1963). It is generally assumed in the quantum logic approach to 
any physical theory that the set of all states S on a logic L is ordering, i.e., 
that 

p(a)=p(b) for all p~S implies a=b (19) 

One can easily check that if {p;} is any collection of states on a logic L 
and {wi} is any collection of  real numbers such that 0 < w i < l  and 
Y,; w~ = 1, then a convex combination ~t wtp~ defined in a pointwise manner 

(~i wipi)(a)=~i wipi(a) (20) 

is again a state on a logic L (in the case of infinite sequences, the sums 
should be understood as limits of suitable finite sums). 
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Definition 2. 7. A state p on a logic L is pure if it cannot be represented 
in the form of a convex combination of other states. A state which is not 
pure is called mixed. 

Definition 2.8. A state p on a logic L is dispersion-flee if for any aeL  
either p(a) = 0 or p(a) = 1. 

It is usually argued that elements of a logic, usually called propositions, 
represent the most primitive statements about physical systems, i.e., state- 
ments which are confirmed or falsified in every single run of any experiment 
designed to check them. The name "state" given to a probability measure 
on a logic is not accidental--it is assumed that it actually represents a state 
of a physical system and that pure (mixed) states of a physical system are 
represented, respectively, by pure (mixed) states on a logic. The link with 
experiments is established by the fundamental assumption of most quantum 
logic approaches (Birkhoff and von Neumann, 1936; Mackey, 1963; Jauch, 
1968; Piron, 1976; Beltrametti and Cassinelli, 1981) that the number p(a) is 
the probability of obtaining positive (yes) result for the proposition "a"  
when the physical system is in the state represented by "p." Since knowledge 
about the structure of the set of propositions is assumed to come from 
experiments performed on a physical system prepared to be in different 
states, the assumption that the set of all states is ordering seems to be 
unavoidable. 

There are two standard examples of logics of physical systems: 

1. A lattice of closed subspaces of a Hilbert space in quantum 
mechanics. 

2. A Boolean algebra of subsets of a phase space in classical mechanics. 

Let us recall that a lattice is a poset in which meet and join of any two 
elements exist and a Boolean algebra is an orthocomplemented lattice in 
which every triple of elements (a, b, c) is distributive, i.e., 

a A (b v c) = (a A b) v (a ^ c) (21) 

a v (b ^ c) = (a v b) ^ (a v e) (22) 

Our considerations are more general since we have not assumed a logic to 
be a lattice, which means that meets and joins of arbitrary elements do not 
always have to exist. 

3. FUZZY QUANTUM LOGICS 

Since for any element a of a logic L and for any state p the number 
p(a) belongs to the unit interval, states can be treated as fuzzy subsets of a 
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universe L, and conversely, propositions can be treated as fuzzy subsets of 
a universe S. This second possibility allows us to utilize the fuzzy set theory 
with the aid of the following theorem of M~tczyfiski (1973, 1974). 

Theorem 3.1. (i) If  L is a logic with an ordering set of probability 
measures S, then each ar induces a function _a :L ~ [0, 1],where a_(p)= 
p(a) for all pr The set of all such functions _L= {_a: a~L} satisfies the 
following condition. 

Orthogonality Postulate: If  _at, a_2 . . . .  is a sequence of functions such 
that qi+qy<_ 1 for i#j ,  then there exists b~L such that b_+qj +q2+ . . . .  1. 

_L equipped with the natural partial order _a < b_ iff q(p) < b_(p) for all 
pES and complementation q'= 1 - q  is isomorphic to L. 

(ii) Conversely, if _L is a set of functions from X into [0, 1] for which 
the orthogonality postulate is satisfied, then it is a logic with respect to the 
natural partial order and complementation. Every point x e X  induces a 
probability measure mx on _L where mx(q)=q(x) for all q~_L and the set of 
all such measures {rex: x~X} is ordering. 

Thanks to this theorem we see that any logic L with an ordering set of 
states S is isomorphic to a family 0_ of fuzzy subsets of S equipped with the 
standard fuzzy set inclusion and complementation, and such that member- 
ship functions of elements of  0- satisfy the orthogonality postulate. Such a 
view on the logics of  physical systems was proposed in Pykacz (1987a). 
According to it the numberp(a),  instead of being interpreted as the probabil- 
ity of obtaining a positive result in an experiment testing the property a 
when a physical system f~ is in the state p, is interpreted as follows: 

p(a)=pA(p) is the grade of  membership of a state p to the (fuzzy) 
subset A of the set of all states S of the physical system ft. The subset A is 
defined by the predicate: 

"the result of an experiment testing the property a is positive" 

or by the predicate: 

"the physical system ~ has the property a" 

Remark. We would like to stress that, according to this point of view, 
one is perfectly allowed to say that a physical system ~ prepared to be in a 
state p has a property a even before this property is measured. Before the 
measurement the sentence "q" = "the system [~ in the state p has the property 
a" should be understood as belonging to the domain of infinite-valued logic 
and its truth-value r(q) can be any number from interval [0, 1]. Of course 
at the same time the sentence " ~ q " = " t h e  system ~ in the state p does not 
have the property a" is also meaningful and r(~q) = 1 - r(q). According to 
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the very idea of the fuzzy set theory the number r (q)=p(a)  can be also 
interpreted as the degree to which the physical system f~ in the state p has 
the property a. 

Since membership functions of weakly disjoint sets A r~ B = ~ ,  accord- 
ing to formula (13), satisfy the condition P A +PB < 1, the orthogonality 
postulate can be translated into the fuzzy set language in the following way 
(Pykacz, 1987a, 1988, 1989): 

Definition 3.1. We say that in the family ~ of fuzzy sets the fuzzy ortho- 
gonality postulate is satisfied if for any sequence AI, A2 . . . .  of pairwise 
weakly disjoint sets ~'.i p Ai < 1 and there exists B e D: such that 

Let us note that if the fuzzy orthogonality postulate is satisfied and 
A~, A2 . . . .  are pairwise weakly disjoint, then 

P v,A, = ~ PA, (24) 
i 

By simply translating M~czyfiski's (1973, 1974) results into the lan- 
guage of fuzzy sets, we can check that the fuzzy orthogonality postulate is 
satisfied in F if and only if in U: the following conditions are satisfied: 

(1.1) ~ contains the empty set 
(1.2) l: is closed under the standard fuzzy set complementation 
(1.3) If A~, A 2 , . . .  are pairwise weakly disjoint, then ~,.pA,<l and 

Definition 3.2. By a fuzzy quantum logic we mean any family of fuzzy 
sets in which the fuzzy orthogonality postulate or, equivalently, conditions 
(1.1)-(1.3) are satisfied. 

Throughout the rest of the paper a fuzzy quantum logic consisting of 
fuzzy subsets of a universe U will be denoted g_(U). 

By part (ii) of the M~tczyfiski theorem any fuzzy quantum logic U_(U) 
is a traditional quantum logic in which partial order coincides with the 
standard fuzzy set inclusion and orthocomplementation is the standard fuzzy 
set complementation. The whole universe U and the empty set ~ are, respec- 
tively, the greatest and the least elements of a fuzzy quantum logic Q_(U). 
Conversely, by part (i) of this theorem, any traditional quantum logic with 
an ordering set of probability measures S is isomorphic to a fuzzy quantum 
logic U_(S). 

We can express the definition of a probability measure (state) on a fuzzy 
quantum logic in fuzzy set terms in the following way: 
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Definition 3.3. By a probability measure (state) on a fuzzy quantum 
logic D_(U) we mean a mapping p: 0_(U) ~ [0, 1 ] such that p(U) = 1 and 

for any sequence of weakly disjoint sets. 
Let us note that by the very definition and by the M~czyfiski theorem 

any fuzzy quantum logic D_(U) admits an ordering set of probability meas- 
ures induced by points xe  U With the aid of the following formula: 

px(A)=pA(X) for all Ae~_(U) (26) 

However, generally there can exist probability measures on a fuzzy quantum 
logic which are not induced by points of the universe U. For example, if all 
membership functions of elements of a fuzzy quantum logic ~_(U) are inte- 
grable on the set U and if we define 

~v c = dx (27) p(A) = c pA(X) dx, where 

then p(U) = 1 and from the formula (24) it follows that 

o u ~ i  / i 

for any sequence of pairwise weakly disjoint sets. Therefore p:n_(U) -4 [0, 1] 
is a probability measure on D.(U). 

Example 3.1. The most standard example of a fuzzy quantum logic can 
be obtained via the M~tczyfiski theorem from the traditional quantum logic 
of projectors on a Hilbert space H. Let P(H) be such a logic and let S(H) 
denote the set of all density matrices on H. The family fl_(S(H)) of all fuzzy 
subsets of S(H), the membership functions of which are defined by 

/ tp(p)=Tr(pP)  for all p~S(H) (29) 

where Pe  O_(S(H)) denotes the fuzzy subset of S(H) generated by the projec- 
tor PeP(H),  is a fuzzy quantum logic isomorphic to P(H). Probability 
measures on O_(S(H)) generated by density matrices are of the form 

mp: I_(S(H)) ~ [0, 1], mp(P)=Tr(pP)  (30) 

Example 3.2. Let X be a topological space and let B(X) be a Boolean 
algebra of Borel subsets of X. B(X) is a fuzzy quantum logic in which all 
elements are crisp and all traditional probability measures on •(X) are states 
in the sense of the Definition 3.2. 
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Before we pass to the comparison of fuzzy quantum logics with other 
structures encountered in the fuzzy set approach to quantum logics, let us 
introduce, after Piasecki (1985), the following definition: 

Definition 3.4. Any fuzzy set I: such that 

/1 E__(/] E' (31) 

is called a weakly empty set. Any fuzzy set U such that 

pu,<pu (32) 

is called a weak universe. 
The pathological behavior of elements of quantum logics such that 

a<a' for a4:0 or a'<a for a 4 I  was recognized long ago. For example, in 
Mackey (1963) the very existence of such elements is excluded by Mackey's 
Axiom VIII. The structure of a "good" quantum logic should guarantee the 
nonexistence of elements described above. The orthogonality postulate or its 
fuzzy version is strong enough to generate such a structure, so the following 
theorem is strongly indicated. 

Theorem 3.2. A fuzzy quantum logic n_(U) does not contain any weakly 
empty set and any weak universe except ~ and U. 

Proof. Let E be any weakly empty set and let U be any weak universe 
in a fuzzy quantum logic L(U). Formula (31) implies, that I:^ I: '=E and 
formula (32) implies that U v U '=  O, where ^ and v denote, respectively, 
meet and join in L(U) partially ordered by the standard fuzzy set inclusion. 
By part (ii) of the M~czyfiski theorem the standard fuzzy set complementa- 
tion in L(U) is an orthocomplementation. Therefore, the condition (iii) of 
Definition 2.5 implies that E = ~ and U = U. �9 

Corollary 3.1. A fuzzy quantum logic L(U) does not contain any set 
whose membership function is constant, except crisp sets ~ and U. 

This result, from the physical point of view, is quite natural, since if 
L(S) is a logic of a physical system, and if pA were a constant function on 
the set of states S, then PA would give no information about the structure 
of S (which reflects features of a physical system) and therefore would be 
quite useless. The crisp sets U and ~ which belong to any fuzzy quantum 
logic L(S) can be thought of as representing trivial properties of existence 
and nonexistence of a physical system and they (or their nonfuzzy coun- 
terparts I and 0) are added to a logic of a physical system mainly for 
mathematical convenience. 
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The fact that a fuzzy quantum logic does not contain any noncrisp set 
whose membership function is constant can be inferred also from the follow- 
ing theorem: 

Theorem 3.3. If a fuzzy quantum logic B_(U) contains a set A # ~ with 
memberships function PA then it does not contain any set whose membership 
function equals CpA for c~(0, 1). 

We shall prove first the following lemma, which is interesting in its own 
right. 

Lemma 3.1. If A and B are two elements of a fuzzy quantum logic 
Q_(U) and A is contained in R, i.e., pA<_pe, then there exists CeL(U) such 
that pC=pa - -pA.  

Proof. If A is contained in B, then p A + l - - P B = P A + p e , < l ,  which 
means that A and B' are weakly disjoint. Therefore, by the fuzzy ortho- 
gonality postulate, there exists C~0_(U) such that p e = l - ( p A + p e , )  = 
J[~B--PA- �9 

Proof of Theorem 3.3. Let us denote by cA the fuzzy set whose member- 
ship function equals CpA. If C~(0, 1/2), then cA is a nonempty, weakly 
empty set and its existence in 0_(U) is excluded by Theorem 3.2. 

Let us suppose now that c~[1/2, 1). If cA belonged to O_(U), then, by 
Lemma 3.1, ( 1 - c ) A  with the membership function (1--)I~A=PA--CpA 
would belong to I_(U) as well. Since 1 -cE(0 ,  1/2], (1 - c ) A  is a nonempty, 
weakly empty set which cannot belong to L(U) by Theorem 3.2. �9 

Again the fact stated in Theorem 3.3 is not surprising from the physical 
point of view. If we had two elements A and cA of a fuzzy quantum logic, 
both of them could be treated as representing the same property a of a 
physical system. For example, let us study a property a = "incoming particles 
are linearly polarized in the direction z" with the aid of a measuring device 
M~ consisting of a linear polarizer LPz oriented in the direction z and a 
counter C~ placed behind it. By applying various preparation procedures to 
incoming particles, i.e., by preparing the particles to be in different states, 
we can obtain, at least approximately, the membership function which char- 
acterizes the set of states A defined by the property a. Now let us replace 
the measuring device M~ by a new one M2 in which the counter C~ is replaced 
by a counter C2 whose sensitivity is 80% of the previous one. All experimental 
outcomes are diminished now by the factor 0.8, but this change does not 
reflect any change of the studied property, but only a change in a measuring 
device. Of course it could be argued that with the aid of M~ and M2 we study 
two different properties: al = "particles pass through LP: and are detected by 
C1" and a2 = "particles pass through LP= and are detected by C2," but it is 
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obvious that by studying property a2 we do not obtain any information 
about a physical system which could not be obtained by studying a~. There- 
fore, there is no reason to include both properties in the mathematical 
description of the physical system at least for the sake of nonredundancy. 

4. OTHER STRUCTURES ENCOUNTERED IN THE FUZZY SET 
APPROACH TO QUANTUM LOGICS 

This section is devoted to the comparison of three notions that are 
different from ours and were independently introduced in the attempt at 
utilizing fuzzy set ideas in the domain of quantum logic. To make this 
comparison easier, we shall rewrite all relevant definitions using the notation 
adopted in the present paper. 

4.1. Fuzzy ~-Orthoposets 

The notion of a fuzzy o--orthoposet was introduced by Guz (1984) in 
the following way. 

Definition 4.1. A fuzzy tr-orthoposet is a family G of fuzzy subsets of 
a universe U such that: 

(o.1) G contains the empty set ~ and the universe U. 
(0.2) If A, BeG and B contains A, then there exists CEG such that 

pC=PB--HA. 
(0.3) For every sequence {AI,A2 . . . . .  A . . . . .  } in G such that 

~iPAi< l, there exists B in G such that pa=~i/-tAi. 

One can easily notice that the notion of a fuzzy cr-orthoposet is more 
general than the notion of a fuzzy quantum logic. Indeed, if n_ is a fuzzy 
quantum logic, then the conditions (1. l) and ( 1.2) imply the condition (o. 1). 
It follows from Lemma 3.1 that the condition (0.2) is also satisfied and since 
any sequence described in the condition (0.3) is pairwise weakly disjoint, 
from (24) and (1.3) it follows that (0.3) is satisfied as well. Thus, we have 
proved the following result. 

Theorem 4.1. Any fuzzy quantum logic is a fuzzy cr-orthoposet. 

Guz (1984) gave several examples of fuzzy cr-orthoposets. The following 
two are the most interesting from the physical point of view. 

Example 4.1. The Boolean a-algebra of ordinary (crisp) sets. 

Example 4.2. The family of fuzzy subsets of a complex Hilbert space 
H whose membership functions are generated by the C*-algebra B(H) of 
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bounded operators acting on H in the following way: 

iJA(x)=(Ax, x)/llxll ifx•0 
(33) 

pA(0)=0, for all xeH,  AeB(H)  

It can be easily seen, for instance by comparing these two examples, 
respectively, with Examples 3.2 and 3.1, that both the above-mentioned 
fuzzy tr-orthoposets are fuzzy quantum logics. This is not the case, because 
of Theorems 3.2 and 3.3 and Corollary 3.1 in the following example. 

Example 4.3. The family I:(U) of all fuzzy subsets of a fixed crisp 
set U. 

However, the comments at the end of Section 3 indicate that the physical 
significance of the structure described in Example 4.3 should not be expected 
to be very big. Therefore, we think that the notion of a fuzzy tr-orthoposet 
is too general to efficiently describe situations encountered in physics. 

Before we close this section let us comment upon the following notions 
introduced in Guz (1984). 

Definition 4.2. Let G~ and G2 be two fuzzy tr-orthoposets. A map 
h : G~ ~ G2 is said to be a tr-homomorphism under the following conditions. 

(i) When A is contained in B, then h(A) is contained in h(B). 
(ii) For every sequence {Ai, A2 . . . . .  A . . . . .  } in Gl which satisfies 

condition (0.3) of Definition 4.2, the sequence of images 
{h(Al), h(A2) . . . . .  h(A,) . . . .  } in G2 also satisfies (0.3) and 

/ - / / f iB) = E / ' / h ( A i )  (34) 
i 

(iii) If, moreover, G~ and ~2 consist of fuzzy subsets of the same 
universe U and h does not diminish grades of membership, i.e., 

pA<_Ith(m for all A~GI (35) 

then the homomorphism h is called proper. 

�9 Definition 4.3. If G~ is a Boolean a-algebra and h: Gj --* G2 is a proper 
homomorphism, then the pair (G2, h) is called a fuzzy extension of the 
Boolean a-algebra GI. 

It can be checked that in fact any proper homomorphism is an identity 
mapping. These explains why, as observed in (Guz, 1984) there is no nontriv- 
ial fuzzy extension for any Boolean a-algebra consisting exclusively of crisp 
sets. 
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4.2. Fuzzy ~r-algebras 

Contrary to fuzzy cr-orthoposets, fuzzy o--algebras studied by Guz 
(1985) are more specific objects than fuzzy quantum logics. The definition 
of a fuzzy o--algebra translated into the language used throughout the present 
paper is the following: 

Definition 4.4. A fuzzy or-algebra [also called by Guz (1985) statistical 
or-algebra] is a family ~ of fuzzy subsets of a universe U which satisfies the 
following axioms (a. 1)-(a.7) : 

(a.1) If pA(x)=lta(x) for all x~ U, then A =  B. 
(a.2) 5 contains the universe U. 
(a.3) $ is closed under the standard fuzzy complementation. 
(a.4) For any sequence {A;} of pairwise weakly disjoint elements of 5 

there is an element B of ~ such that 

pB(X)=ff']2Ai(X) for all x~U (36) 
i 

(a.5) If A, B ~  are not weakly disjoint, then there is xe  U such that 

pA(x) = 1 and p B(x) > 0 (37) 

(a.6) For each x~ U there is A e ~  such that 

pA(x) = 1 and PA(y) < 1 for all y~ U, y r  (38) 

(a.7) If pA(x)> 0, where xE U and A~ U, then there exists one and only 
one point y~ U such that pA(y)= 1 and pA(x)= (x :y), where 
(x :y), !he so-called transition probability from x to y, is defined 
by 

(x :y) = inf{p A(x) : A ~ 5, p A(y) = 1 } (39) 

It is easy to notice that the Guz axioms (a.2)-(a.4) are equivalent to 
conditions (1.1)-(1.3) which define a fuzzy quantum logic; therefore, we 
obtain the following result. 

Theorem 4.2. Any fuzzy o--algebra is a fuzzy quantum logic. 

However, other Guz axioms [besides axiom (a.1), which is nothing more 
than the definition of equality of fuzzy sets] make fuzzy o--algebras a proper 
subclass of a class of fuzzy quantum logics. It can be checked that some 
results of Guz (1985), like the theorem which says that any fuzzy a-algebra 
is an orthomodular tr-orthoposet with the least and the greatest element, 
depend only on axioms (a.1)-(a.4) [in fact this theorem is a "fuzzy" version 
of Theorem 3.1 proved by M~czyfiski (1973)]. Other results, e.g., that any 
fuzzy o--algebra is an atomistic cr-orthoposet satisfying the covering law, 
depend on all Guz axioms, so they could not be obtained in the general 
fuzzy quantum logic framework. 
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4.3. Fuzzy Quantum Spaces 

The notion of a fuzzy quantum space was introduced by Dvure~enskij 
and Chovanec (1988) as a fuzzy generalization of a quantum space of Suppes 
(1966). This notion also shows remarkable similarities to the notion of a 
fuzzy quantum logic. 

Definition 4.5. A fuzzy  quantum space is a family M of fuzzy subsets of 
a universe U such that: 

(s.1) M contains the empty set ~ .  
(s.2) [~ is closed under the standard fuzzy set complementation. 
(s.3) I f p A ( x )  = 1/2 for all x~U,  then A~M. 
(s.4) If A1, A2 , . . .  are pairwise weakly disjoint, then Ui Aie [~. 

When we compare Definition 4.5 with Definition 3.2 of a fuzzy quantum 
logic we see that conditions (s.1) and (1.1), as well as conditions (s.2) and 
(1.2), are identical. However, the union in the condition (s.4) is the standard 
(Zadeh) fuzzy set union whose membership function is defined as the point- 
wise supremum of membership functions of sets Ai: 

/a U,A,(X) = sup,(p Ai(X) ) (40) 

while in the analogous condition (1.3) of the definition of a fuzzy quantum 
logic, Giles' bold union is utilized. Moreover, according to the condition 
(I. 3) of Definition 3.2 the algebraic sum of membership functions of pairwise 
weakly disjoint sets should not exceed 1. This is a very restrictive condition 
and mainly due to this condition, fuzzy quantum logics have the sophis- 
ticated structure of an orthocomplemented orthomodular set. 

Let us note that in the definition of a fuzzy quantum space M of 
Dvure~enskij and Chovanec there is nothing which could prevent ~ from 
containing a noncrisp, weakly empty set, weak universe, or sets of the form 
cA, which explains why in the condition (s.3) of Definition 4.5 nonexistence 
of a fuzzy set with membership function constantly equal to 1/2 had to 
be assumed separately. Nevertheless, this condition was adopted by 
Dvure~enskij and Chovenec because of mathematical convenience (in fact 
their paper is mainly a mathematical one and it does not contain any applica- 
tion of their notions in theoretical or experimental physics). 
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